Management of filariasis using prediction rules derived from data mining

نویسندگان

  • Duvvuri Venkata Rama Satya Kumar
  • Kumarawsamy Sriram
  • Kadiri Madhusudhan Rao
  • Upadhyayula Suryanarayana Murty
چکیده

The present paper demonstrates the application of CART (classification and regression trees) to control a mosquito vector (Culex quinquefasciatus) for bancroftian filariasis in India. The database on filariasis and a commercially available software CART (Salford systems Inc. USA) were used in this study. Baseline entomological data related to bancroftian filariasis was utilized for deriving prediction rules. The data was categorized into three different aspects, namely (1) mosquito abundance, (2) meteorological and (3) socio-economic details. This data was taken from a database developed for a project entitled "Database management system for the control of bancroftian filariasis" sponsored by Ministry of Communication and Information Technology (MC&IT), Government of India, New Delhi. Predictor variables (maximum temperature, minimum temperature, rain fall, relative humidity, wind speed, house type) were ranked by CART according to their influence on the target variable (month). The approach is useful for forecasting vector (mosquito) densities in forthcoming seasons.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Prediction of mortality in patients admitted to intensive care units, A comparison of three data mining techniques: a brief report.

Background: Early outcome prediction of hospitalized patients is critical because the intensivists are constantly striving to improve patients' survival by taking effective medical decisions about ill patients in Intensive Care Units (ICUs). Despite rapid progress in medical treatments and intensive care technology, the analysis of outcomes, including mortality prediction, has been a challenge ...

متن کامل

Retaining Customers Using Clustering and Association Rules in Insurance Industry: A Case Study

This study clusters customers and finds the characteristics of different groups in a life insurance company in order to find a way for prediction of customer behavior based on payment. The approach is to use clustering and association rules based on CRISP-DM methodology in data mining. The researcher could classify customers of each policy in three different clusters, using association rules. A...

متن کامل

Prediction of chronic kidney disease in Isfahan with extracting association rules using data mining techniques

Background: Millions of deaths occur around the world each year due to lack of access to appropriate treatment for chronic kidney disease patients. Given the importance and mortality rate of this disease, early and low-cost prediction is very important. The researchers intend to identify chronic kidney disease through the optimal combination of techniques used in different stages of data mining...

متن کامل

Customer Retention Based on the Number of Purchase: A Data Mining Approach

Purpose: this study wants to find any relationship between the numbers of purchase and the income the customer brings to the company. The attempt is to find those customers who buy more than one life insurance policy and represent the signs of good payments at the same time by the help of data mining tools. Design/ methodology/ approach: the approach of this research is to use data mining tools...

متن کامل

A Proposed Model to Identify Factors Affecting Asthma using Data Mining

Introduction: The identification of asthma risk factors plays an important role in the prevention of the asthma as well as reducing the severity of symptoms. Nowadays, the identification process can be performed using modern techniques. Data mining is one of the techniques which has many applications in the fields of diagnosis, prediction, and treatment. This study aimed to identify the effecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Bioinformation

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2005